Stationary Random Measures on Homogeneous Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stationary Measures and Invariant Subsets of Homogeneous Spaces (ii)

We recall that a probability measure ν on X is said to be μ-stationary if one has μ ∗ ν = ν. It is then said to be μ-ergodic if it is extremal among μ-stationary probability measures. We will say that a probability measure ν on X is homogeneous if it is supported by a closed orbit F of its stabilizer Gν := {g ∈ G | g∗ν = ν}. Such a probability is a finite average of probability measures which a...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Random Walks on Homogeneous Spaces and Diophantine Approximation on Fractals

We extend results of Y. Benoist and J.-F. Quint concerning random walks on homogeneous spaces of simple Lie groups to the case where the measure defining the random walk generates a semigroup which is not necessarily Zariski dense, but satisfies some expansion properties for the adjoint action. Using these dynamical results, we study Diophantine properties of typical points on some self-similar...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2009

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-009-0231-9